This the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Advanced

This section contains advanced documents for system administrators.

1 - Installation Analytics

Instructions for deployment and customization of Analytics. This section on GitHub.

It is possible to proxy annotation logs from client to ELK. To do that run the following command below:

Build docker image

# From project root directory
docker-compose -f docker-compose.yml -f components/analytics/docker-compose.analytics.yml build

Run docker container

# From project root directory
docker-compose -f docker-compose.yml -f components/analytics/docker-compose.analytics.yml up -d

At the moment it is not possible to save advanced settings. Below values should be specified manually.

Time picker default

{ “from”: “now/d”, “to”: “now/d”, “display”: “Today”, “section”: 0 }

Time picker quick ranges

[
  {
    "from": "now/d",
    "to": "now/d",
    "display": "Today",
    "section": 0
  },
  {
    "from": "now/w",
    "to": "now/w",
    "display": "This week",
    "section": 0
  },
  {
    "from": "now/M",
    "to": "now/M",
    "display": "This month",
    "section": 0
  },
  {
    "from": "now/y",
    "to": "now/y",
    "display": "This year",
    "section": 0
  },
  {
    "from": "now/d",
    "to": "now",
    "display": "Today so far",
    "section": 2
  },
  {
    "from": "now/w",
    "to": "now",
    "display": "Week to date",
    "section": 2
  },
  {
    "from": "now/M",
    "to": "now",
    "display": "Month to date",
    "section": 2
  },
  {
    "from": "now/y",
    "to": "now",
    "display": "Year to date",
    "section": 2
  },
  {
    "from": "now-1d/d",
    "to": "now-1d/d",
    "display": "Yesterday",
    "section": 1
  },
  {
    "from": "now-1w/w",
    "to": "now-1w/w",
    "display": "Previous week",
    "section": 1
  },
  {
    "from": "now-1m/m",
    "to": "now-1m/m",
    "display": "Previous month",
    "section": 1
  },
  {
    "from": "now-1y/y",
    "to": "now-1y/y",
    "display": "Previous year",
    "section": 1
  }
]

2 - Semi-automatic and Automatic Annotation

Information about the installation of components needed for semi-automatic and automatic annotation.

⚠ WARNING: Do not use docker-compose up If you did, make sure all containers are stopped by docker-compose down.

  • To bring up cvat with auto annotation tool, from cvat root directory, you need to run:

    docker-compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml up -d
    

    If you did any changes to the docker-compose files, make sure to add --build at the end.

    To stop the containers, simply run:

    docker-compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml down
    
  • You have to install nuctl command line tool to build and deploy serverless functions. Download version 1.5.16. It is important that the version you download matches the version in docker-compose.serverless.yml. For example, using wget.

    wget https://github.com/nuclio/nuclio/releases/download/<version>/nuctl-<version>-linux-amd64
    

    After downloading the nuclio, give it a proper permission and do a softlink

    sudo chmod +x nuctl-<version>-linux-amd64
    sudo ln -sf $(pwd)/nuctl-<version>-linux-amd64 /usr/local/bin/nuctl
    
  • Create cvat project inside nuclio dashboard where you will deploy new serverless functions and deploy a couple of DL models. Commands below should be run only after CVAT has been installed using docker-compose because it runs nuclio dashboard which manages all serverless functions.

    nuctl create project cvat
    
    nuctl deploy --project-name cvat \
      --path serverless/openvino/dextr/nuclio \
      --volume `pwd`/serverless/common:/opt/nuclio/common \
      --platform local
    
    nuctl deploy --project-name cvat \
      --path serverless/openvino/omz/public/yolo-v3-tf/nuclio \
      --volume `pwd`/serverless/common:/opt/nuclio/common \
      --platform local
    

    Note:

    GPU Support

    You will need to install Nvidia Container Toolkit. Also you will need to add --resource-limit nvidia.com/gpu=1 --triggers '{"myHttpTrigger": {"maxWorkers": 1}}' to the nuclio deployment command. You can increase the maxWorker if you have enough GPU memory. As an example, below will run on the GPU:

    nuctl deploy --project-name cvat \
      --path serverless/tensorflow/matterport/mask_rcnn/nuclio \
      --platform local --base-image tensorflow/tensorflow:1.15.5-gpu-py3 \
      --desc "GPU based implementation of Mask RCNN on Python 3, Keras, and TensorFlow." \
      --image cvat/tf.matterport.mask_rcnn_gpu \
      --triggers '{"myHttpTrigger": {"maxWorkers": 1}}' \
      --resource-limit nvidia.com/gpu=1
    

    Note:

    • The number of GPU deployed functions will be limited to your GPU memory.
    • See deploy_gpu.sh script for more examples.

Troubleshooting Nuclio Functions:

  • You can open nuclio dashboard at localhost:8070. Make sure status of your functions are up and running without any error.

  • Test your deployed DL model as a serverless function. The command below should work on Linux and Mac OS.

    image=$(curl https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png --output - | base64 | tr -d '\n')
    cat << EOF > /tmp/input.json
    {"image": "$image"}
    EOF
    cat /tmp/input.json | nuctl invoke openvino.omz.public.yolo-v3-tf -c 'application/json'
    
    20.07.17 12:07:44.519    nuctl.platform.invoker (I) Executing function {"method": "POST", "url": "http://:57308", "headers": {"Content-Type":["application/json"],"X-Nuclio-Log-Level":["info"],"X-Nuclio-Target":["openvino.omz.public.yolo-v3-tf"]}}
    20.07.17 12:07:45.275    nuctl.platform.invoker (I) Got response {"status": "200 OK"}
    20.07.17 12:07:45.275                     nuctl (I) >>> Start of function logs
    20.07.17 12:07:45.275 ino.omz.public.yolo-v3-tf (I) Run yolo-v3-tf model {"worker_id": "0", "time": 1594976864570.9353}
    20.07.17 12:07:45.275                     nuctl (I) <<< End of function logs
    
    > Response headers:
    Date = Fri, 17 Jul 2020 09:07:45 GMT
    Content-Type = application/json
    Content-Length = 100
    Server = nuclio
    
    > Response body:
    [
        {
            "confidence": "0.9992254",
            "label": "person",
            "points": [
                39,
                124,
                408,
                512
            ],
            "type": "rectangle"
        }
    ]
    
  • To check for internal server errors, run docker ps -a to see the list of containers. Find the container that you are interested, e.g., nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu. Then check its logs by docker logs <name of your container> e.g.,

    docker logs nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu
    
  • To debug a code inside a container, you can use vscode to attach to a container instructions. To apply your changes, make sure to restart the container.

    docker restart <name_of_the_container>
    

3 - Mounting cloud storage

Instructions on how to mount AWS S3 bucket, Microsoft Azure container or Google Drive as a filesystem.

AWS S3 bucket as filesystem

Ubuntu 20.04

Mount

  1. Install s3fs:

    sudo apt install s3fs
    
  2. Enter your credentials in a file ${HOME}/.passwd-s3fs and set owner-only permissions:

    echo ACCESS_KEY_ID:SECRET_ACCESS_KEY > ${HOME}/.passwd-s3fs
    chmod 600 ${HOME}/.passwd-s3fs
    
  3. Uncomment user_allow_other in the /etc/fuse.conf file: sudo nano /etc/fuse.conf

  4. Run s3fs, replace bucket_name, mount_point:

    s3fs <bucket_name> <mount_point> -o allow_other
    

For more details see here.

Automatically mount

Follow the first 3 mounting steps above.

Using fstab
  1. Create a bash script named aws_s3_fuse(e.g in /usr/bin, as root) with this content (replace user_name on whose behalf the disk will be mounted, backet_name, mount_point, /path/to/.passwd-s3fs):

    #!/bin/bash
    sudo -u <user_name> s3fs <backet_name> <mount_point> -o passwd_file=/path/to/.passwd-s3fs -o allow_other
    exit 0
    
  2. Give it the execution permission:

    sudo chmod +x /usr/bin/aws_s3_fuse
    
  3. Edit /etc/fstab adding a line like this, replace mount_point):

    /absolute/path/to/aws_s3_fuse  <mount_point>     fuse    allow_other,user,_netdev     0       0
    
Using systemd
  1. Create unit file sudo nano /etc/systemd/system/s3fs.service (replace user_name, bucket_name, mount_point, /path/to/.passwd-s3fs):

    [Unit]
    Description=FUSE filesystem over AWS S3 bucket
    After=network.target
    
    [Service]
    Environment="MOUNT_POINT=<mount_point>"
    User=<user_name>
    Group=<user_name>
    ExecStart=s3fs <bucket_name> ${MOUNT_POINT} -o passwd_file=/path/to/.passwd-s3fs -o allow_other
    ExecStop=fusermount -u ${MOUNT_POINT}
    Restart=always
    Type=forking
    
    [Install]
    WantedBy=multi-user.target
    
  2. Update the system configurations, enable unit autorun when the system boots, mount the bucket:

    sudo systemctl daemon-reload
    sudo systemctl enable s3fs.service
    sudo systemctl start s3fs.service
    

Check

A file /etc/mtab contains records of currently mounted filesystems.

cat /etc/mtab | grep 's3fs'

Unmount filesystem

fusermount -u <mount_point>

If you used systemd to mount a bucket:

sudo systemctl stop s3fs.service
sudo systemctl disable s3fs.service

Microsoft Azure container as filesystem

Ubuntu 20.04

Mount

  1. Set up the Microsoft package repository.(More here)

    wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb
    sudo dpkg -i packages-microsoft-prod.deb
    sudo apt-get update
    
  2. Install blobfuse and fuse:

    sudo apt-get install blobfuse fuse
    

    For more details see here

  3. Create environments (replace account_name, account_key, mount_point):

    export AZURE_STORAGE_ACCOUNT=<account_name>
    export AZURE_STORAGE_ACCESS_KEY=<account_key>
    MOUNT_POINT=<mount_point>
    
  4. Create a folder for cache:

    sudo mkdir -p /mnt/blobfusetmp
    
  5. Make sure the file must be owned by the user who mounts the container:

    sudo chown <user> /mnt/blobfusetmp
    
  6. Create the mount point, if it doesn’t exists:

    mkdir -p ${MOUNT_POINT}
    
  7. Uncomment user_allow_other in the /etc/fuse.conf file: sudo nano /etc/fuse.conf

  8. Mount container(replace your_container):

    blobfuse ${MOUNT_POINT} --container-name=<your_container> --tmp-path=/mnt/blobfusetmp -o allow_other
    

Automatically mount

Follow the first 7 mounting steps above.

Using fstab
  1. Create configuration file connection.cfg with same content, change accountName, select one from accountKey or sasToken and replace with your value:

    accountName <account-name-here>
    # Please provide either an account key or a SAS token, and delete the other line.
    accountKey <account-key-here-delete-next-line>
    #change authType to specify only 1
    sasToken <shared-access-token-here-delete-previous-line>
    authType <MSI/SAS/SPN/Key/empty>
    containerName <insert-container-name-here>
    
  2. Create a bash script named azure_fuse(e.g in /usr/bin, as root) with content below (replace user_name on whose behalf the disk will be mounted, mount_point, /path/to/blobfusetmp,/path/to/connection.cfg):

    #!/bin/bash
    sudo -u <user_name> blobfuse <mount_point> --tmp-path=/path/to/blobfusetmp  --config-file=/path/to/connection.cfg -o allow_other
    exit 0
    
  3. Give it the execution permission:

    sudo chmod +x /usr/bin/azure_fuse
    
  4. Edit /etc/fstab with the blobfuse script. Add the following line(replace paths):

/absolute/path/to/azure_fuse </path/to/desired/mountpoint> fuse allow_other,user,_netdev
Using systemd
  1. Create unit file sudo nano /etc/systemd/system/blobfuse.service. (replace user_name, mount_point, container_name,/path/to/connection.cfg):

    [Unit]
    Description=FUSE filesystem over Azure container
    After=network.target
    
    [Service]
    Environment="MOUNT_POINT=<mount_point>"
    User=<user_name>
    Group=<user_name>
    ExecStart=blobfuse ${MOUNT_POINT} --container-name=<container_name> --tmp-path=/mnt/blobfusetmp --config-file=/path/to/connection.cfg -o allow_other
    ExecStop=fusermount -u ${MOUNT_POINT}
    Restart=always
    Type=forking
    
    [Install]
    WantedBy=multi-user.target
    
  2. Update the system configurations, enable unit autorun when the system boots, mount the container:

    sudo systemctl daemon-reload
    sudo systemctl enable blobfuse.service
    sudo systemctl start blobfuse.service
    

    Or for more detail see here

Check

A file /etc/mtab contains records of currently mounted filesystems.

cat /etc/mtab | grep 'blobfuse'

Unmount filesystem

fusermount -u <mount_point>

If you used systemd to mount a container:

sudo systemctl stop blobfuse.service
sudo systemctl disable blobfuse.service

If you have any mounting problems, check out the answers to common problems

Google Drive as filesystem

Ubuntu 20.04

Mount

To mount a google drive as a filesystem in user space(FUSE) you can use google-drive-ocamlfuse To do this follow the instructions below:

  1. Install google-drive-ocamlfuse:

    sudo add-apt-repository ppa:alessandro-strada/ppa
    sudo apt-get update
    sudo apt-get install google-drive-ocamlfuse
    
  2. Run google-drive-ocamlfuse without parameters:

    google-drive-ocamlfuse
    

    This command will create the default application directory (~/.gdfuse/default), containing the configuration file config (see the wiki page for more details about configuration). And it will start a web browser to obtain authorization to access your Google Drive. This will let you modify default configuration before mounting the filesystem.

    Then you can choose a local directory to mount your Google Drive (e.g.: ~/GoogleDrive).

  3. Create the mount point, if it doesn’t exist(replace mount_point):

    mountpoint="<mount_point>"
    mkdir -p $mountpoint
    
  4. Uncomment user_allow_other in the /etc/fuse.conf file: sudo nano /etc/fuse.conf

  5. Mount the filesystem:

    google-drive-ocamlfuse -o allow_other $mountpoint
    

Automatically mount

Follow the first 4 mounting steps above.

Using fstab
  1. Create a bash script named gdfuse(e.g in /usr/bin, as root) with this content (replace user_name on whose behalf the disk will be mounted, label, mount_point):

    #!/bin/bash
    sudo -u <user_name> google-drive-ocamlfuse -o allow_other -label <label> <mount_point>
    exit 0
    
  2. Give it the execution permission:

    sudo chmod +x /usr/bin/gdfuse
    
  3. Edit /etc/fstab adding a line like this, replace mount_point):

    /absolute/path/to/gdfuse  <mount_point>     fuse    allow_other,user,_netdev     0       0
    

    For more details see here

Using systemd
  1. Create unit file sudo nano /etc/systemd/system/google-drive-ocamlfuse.service. (replace user_name, label(default label=default), mount_point):

    [Unit]
    Description=FUSE filesystem over Google Drive
    After=network.target
    
    [Service]
    Environment="MOUNT_POINT=<mount_point>"
    User=<user_name>
    Group=<user_name>
    ExecStart=google-drive-ocamlfuse -label <label> ${MOUNT_POINT}
    ExecStop=fusermount -u ${MOUNT_POINT}
    Restart=always
    Type=forking
    
    [Install]
    WantedBy=multi-user.target
    
  2. Update the system configurations, enable unit autorun when the system boots, mount the drive:

    sudo systemctl daemon-reload
    sudo systemctl enable google-drive-ocamlfuse.service
    sudo systemctl start google-drive-ocamlfuse.service
    

    For more details see here

Check

A file /etc/mtab contains records of currently mounted filesystems.

cat /etc/mtab | grep 'google-drive-ocamlfuse'

Unmount filesystem

fusermount -u <mount_point>

If you used systemd to mount a drive:

sudo systemctl stop google-drive-ocamlfuse.service
sudo systemctl disable google-drive-ocamlfuse.service

4 - Backup guide

Instructions on how to backup CVAT data with Docker.

About CVAT data volumes

Docker volumes are used to store all CVAT data:

  • cvat_db: PostgreSQL database files, used to store information about users, tasks, projects, annotations, etc. Mounted into cvat_db container by /var/lib/postgresql/data path.

  • cvat_data: used to store uploaded and prepared media data. Mounted into cvat container by /home/django/data path.

  • cvat_keys: used to store user ssh keys needed for synchronization with a remote Git repository. Mounted into cvat container by /home/django/keys path.

  • cvat_logs: used to store logs of CVAT backend processes managed by supevisord. Mounted into cvat container by /home/django/logs path.

  • cvat_events: this is an optional volume that is used only when Analytics component is enabled and is used to store Elasticsearch database files. Mounted into cvat_elasticsearch container by /usr/share/elasticsearch/data path.

How to backup all CVAT data

All CVAT containers should be stopped before backup:

docker-compose stop

Please don’t forget to include all the compose config files that were used in the docker-compose command using the -f parameter.

Backup data:

mkdir backup
docker run --rm --name temp_backup --volumes-from cvat_db -v $(pwd)/backup:/backup ubuntu tar -cjvf /backup/cvat_db.tar.bz2 /var/lib/postgresql/data
docker run --rm --name temp_backup --volumes-from cvat -v $(pwd)/backup:/backup ubuntu tar -cjvf /backup/cvat_data.tar.bz2 /home/django/data
# [optional]
docker run --rm --name temp_backup --volumes-from cvat_elasticsearch -v $(pwd)/backup:/backup ubuntu tar -cjvf /backup/cvat_events.tar.bz2 /usr/share/elasticsearch/data

Make sure the backup archives have been created, the output of ls backup command should look like this:

ls backup
cvat_data.tar.bz2  cvat_db.tar.bz2  cvat_events.tar.bz2

How to restore CVAT from backup

Note: CVAT containers must exist (if no, please follow the installation guide). Stop all CVAT containers:

docker-compose stop

Restore data:

cd <path_to_backup_folder>
docker run --rm --name temp_backup --volumes-from cvat_db -v $(pwd):/backup ubuntu bash -c "cd /var/lib/postgresql/data && tar -xvf /backup/cvat_db.tar.bz2 --strip 4"
docker run --rm --name temp_backup --volumes-from cvat -v $(pwd):/backup ubuntu bash -c "cd /home/django/data && tar -xvf /backup/cvat_data.tar.bz2 --strip 3"
# [optional]
docker run --rm --name temp_backup --volumes-from cvat_elasticsearch -v $(pwd):/backup ubuntu bash -c "cd /usr/share/elasticsearch/data && tar -xvf /backup/cvat_events.tar.bz2 --strip 4"

After that run CVAT as usual:

docker-compose up -d

Additional resources

Docker guide about volume backups