About Us

CVAT was designed to provide users with a set of convenient instruments for annotating digital images and videos.
CVAT supports supervised machine learning tasks pertaining to object detection, image classification, image segmentation and 3D data annotation. It allows users to annotate images with multiple tools (boxes, polygons, cuboids, circles, skeletons, etc).

Data scientists need annotated data (and lots of it) to train the deep neural networks (DNNs) at the core of AI workflows. Obtaining annotated data or annotating data yourself is a challenging and time-consuming process.
For example, it took about 3,100 total hours for members of Intel’s own data annotation team to annotate more than 769,000 objects for just one of our algorithms. To help solve this challenge, CVAT.ai is conducting research to find better methods of data annotation and deliver tools that help developers do the same.


Vatic as a web-based annotation solution.


Internal version with support for images and attributes.


First public release on GitHub.


UI based on React and AntD.
app.cvat.ai as data platform.


Dataset as the first-class citizen.


Data platform.

Contact Us:

365 Agiou Andreou, Office 201, 3035 Limassol, Cyprus

Feedback from users helps CVAT team to determine future direction for CVAT’s development. We hope to improve the tool’s user experience, feature set, stability, automation features and ability to be integrated with other services and encourage members of the community to take an active part in CVAT’s development.