1 - CVAT Architecture

Description of CVAT architecture and components

This guide is designed to provide a comprehensive overview of the architecture and components of the CVAT and to illustrate how each component interacts within the system.

CVAT Architecture

Domain Component   Functionality Description
Analytics Vector                                                                                                                                                                                                                       Event processing                                                                                               There are several components that process events (backend, frontend, web UI). All events are sent to a single point - Vector, where they are processed and then redirected to ClickHouse. For more information, see Analytics.
                        ClickHouse                                                                                                                                                                                                                   Event database                                                                                                 Stores events. For more information, see Analytics.                                                                                                                                                                            
                        Grafana                                                                                                                                                                                                                     Dashboards                                                                                                     Data based on the web interface. For more information, see Analytics.                                                                                                                                                          
Data storage NFS RVVX access mode storage is required in case of multi-node deployment. Available with different types of storages:

  • AWS: Amazon Elastic File System (EFS)
  • Azure: Azure Files with NFS
  • GCP: Filestore NFS
  • Contains data required for CVAT operations                                                                   It is necessary to have the capability for multiple mounting (across several nodes) in RWX mode. For more information, see K8 Deployment with Helm                                                              
    Data cache Apache kvrocks                                                                                                                                                                                                               Used for data caching (queries and search). Suitable for environments that require frequent database queries. Apache Kvrocks                                                                                                                                                                                                                              
    Job queue Redis                                                                                                                                                                                                                       Queue manager                                                                                                                                                                                                                                                                                                                                                                            
    Database PostgreSQL                                                                                                                                                                                                                   Database                                                                                                       A database where data is stored in a structured form.                                                                                                                                                                                                                      
    CVAT.ai Components Ingress Controller (can be disabled)                                                                                                                                                                                         Routing traffic.                                                                                               CVAT deployment on Kubernetes with Helm                                                                                                                                                                        
                            Authorization                                                                                                                                                                                                               Authorization service based on Open Policy Agent.                    
    Backend CVAT Backend                                                                                                                                                                                                                     Main framework                                                                                                 Main engine, uses Django + Django DRF.                                                                                                                                                                                                                                    
    Workers Import Worker                                                                                                                                                                                                               Everything related to loading data - creating tasks, uploading annotations, etc.                                                                                                                                                                                                                                                                                                          
                            Export Worker                                                                                                                                                                                                               Everything related to exporting data - exporting results, creating dumps, etc.                                                                                                                                                                                                                                                                                                            
                            Annotation Worker                                                                                                                                                                                                           Auto-annotation tasks.                                                                                                                                                                                                                                                                                                                                                                    
                            Utils Worker                                                                                                                                                                                                                 Responsible for tracking various file changes and more.                                                                                                                                                                                                                                                                                                                                  
                            Analytics Report                                                                                                                                                                                                             Reports and analytics that are displayed in the CVAT interface.                                                                                                                                                                                                                                                                                                                          
                            Quality Report                                                                                                                                                                                                               Analysis and reports on data quality.                                                                                                                                                                                                                                                                                                                                                    
                            Webhook Worker                                                                                                                                                                                                               Manages webhooks.                                                                                                                                                                                                                                                                                                                                                                        
    Auto annotation         Auto Annotation Nucio                                                                                                                                                                                                       Microservice application, used for auto annotation.                                                           How to enable auto annotation feature.                                                                                                                                  

    2 - CVAT deployment on Kubernetes with Helm

    Instructions for deploying CVAT on a Kubernetes cluster.

    Prerequisites

    1. Installed and configured kubernetes cluster. If you do not already have a cluster, you can create one by using Minikube. How to setup Minikube.
    2. Installed kubectl
    3. Installed Helm.
    4. Installed dependencies

    Installing dependencies

    To install and/or update run:

    helm dependency update
    

    Optional steps

    1. Ingress configuration for the Traefik ingress controller is enabled by default.

      Note for Minikube use:

      • because the Traefik creates its main service with Loadbalanser type, which involve the assignment of externalIP by Cloud, what never happens on Minikube, you need to explicitly set the externalIP address for the traefic service. Add the following to values.override.yaml file:
        traefik:
          service:
            externalIPs:
              - "your minikube IP (can be obtained with `minikube ip` command)"
        
      • Also ensure that your CVAT ingress appears on your hosts file (/etc/hosts). You can do this by running this command: cvat.local is default domainname, you can override it via values.override.yaml.
        echo "$(minikube ip) cvat.local" | sudo tee -a /etc/hosts
        

    Configuration

    1. Create values.override.yaml file inside helm-chart directory.
    2. Fill values.override.yaml with new parameters for chart.
    3. Override postgresql password

    Postgresql password?

    Put below into your values.override.yaml

    postgresql:
      secret:
        password: <insert_password>
        postgres_password: <insert_postgres_password>
        replication_password: <insert_replication_password>
    

    Or create your own secret and use it with:

    postgresql:
       global:
         postgresql:
           existingSecret: <secret>
    

    (Optional) Enable Auto annotation feature

    Before starting, ensure that the following prerequisites are met:

    • The Nuclio CLI (nuctl) is installed. To install the CLI, simply download the appropriate CLI version to your installation machine.
    1. Set nuclio.enabled: true in your values.override.yaml

    2. Run helm dependency update in helm-chart directory

    3. Because Nuclio functions are images that need to be pushed and pulled to/from the registry, you need to configure credentials to pull from your preferable registry with the following settings: Options:

      • values.override.yaml file:

        registry:
          loginUrl: someurl
          credentials:
            username: someuser
            password: somepass
        
      • Or you can create a secret with credentials as described in the guide and set registry.secretName=your-registry-credentials-secret-name in the values.override.yaml file.

      • In the case of using Minikube, you can run a local unsecured registry with minikube add-ons:

        minikube addons enable registry
        minikube addons enable registry-aliases
        

        Before Docker container images can be pushed to your newly created insecure registry, you need to add its address ($(minikube ip):5000) to the list of insecure registries to instruct Docker to accept working against it: follow the instructions in the Docker documentation

      You might also need to log into your registry account (docker login) on the installation machine before running the deployment command.

    4. Create cvat project:

      nuctl --namespace <your cvat namespace> create project cvat
      
    5. Finally deploy the function, i.e.:

      • using minikube registry:
        nuctl deploy --project-name cvat --path serverless/tensorflow/faster_rcnn_inception_v2_coco/nuclio --registry $(minikube ip):5000 --run-registry registry.minikube
        
      • using Docker hub:
        nuctl deploy --project-name cvat --path serverless/tensorflow/faster_rcnn_inception_v2_coco/nuclio --registry docker.io/your_username
        

    Analytics

    Analytics is enabled by default, to disable set analytics.enabled: false in your values.override.yaml

    Deployment

    Make sure you are using correct kubernetes context. You can check it with kubectl config current-context.

    Warning: The k8s service name of Open Policy Agent is fixed to opa by default. This is done to be compatible with CVAT 2.0 but limits this helm chart to a single release per namespace. The OPA url currently can´t be set as an environment variable. As soon as this is possible you can set cvat.opa.composeCompatibleServiceName to false in your value.override.yaml and configure the opa url as additional env.

    Execute following command from repo root directory

    With overrides:

    helm upgrade -n <desired_namespace> <release_name> -i --create-namespace ./helm-chart -f ./helm-chart/values.yaml -f ./helm-chart/values.override.yaml

    Without overrides:

    helm upgrade -n <desired_namespace> <release_name> -i --create-namespace ./helm-chart -f ./helm-chart/values.yaml

    Post-deployment configuration

    1. Create super user

    How to create superuser?

    HELM_RELEASE_NAMESPACE="<desired_namespace>" &&\
    HELM_RELEASE_NAME="<release_name>" &&\
    BACKEND_POD_NAME=$(kubectl get pod --namespace $HELM_RELEASE_NAMESPACE -l tier=backend,app.kubernetes.io/instance=$HELM_RELEASE_NAME,component=server -o jsonpath='{.items[0].metadata.name}') &&\
    kubectl exec -it --namespace $HELM_RELEASE_NAMESPACE $BACKEND_POD_NAME -c cvat-backend -- python manage.py createsuperuser
    

    FAQ

    What is kubernetes and how it is working?

    See https://kubernetes.io/

    What is helm and how it is working?

    See https://helm.sh/

    How to setup Minikube

    1. Please follow the official Minikube installation guide
    2. minikube start --addons registry,registry-aliases
      

    How to understand what diff will be inflicted by ‘helm upgrade’?

    You can use https://github.com/databus23/helm-diff#install for that

    I want to use my own postgresql with your chart.

    Just set postgresql.enabled to false in the override file, then put the parameters of your database instance in the external field. You may also need to configure username, database and password fields to connect to your own database:

    postgresql:
      enabled: false
      external:
        host: postgresql.default.svc.cluster.local
        port: 5432
      auth:
        username: cvat
        database: cvat
      secret:
        password: cvat_postgresql
    

    In example above corresponding secret will be created automatically, but if you want to use existing secret change secret.create to false and set name of existing secret:

    postgresql:
      enabled: false
      external:
        host: postgresql.default.svc.cluster.local
        port: 5432
      secret:
        create: false
        name: "my-postgresql-secret"
    

    The secret must contain the database, username and password keys to access to the database like:

    apiVersion: v1
    kind: Secret
    metadata:
      name: "my-postgresql-secret"
      namespace: default
    type: generic
    stringData:
      database: cvat
      username: cvat
      password: secretpassword
    

    I want to use my own redis with your chart.

    Just set redis.enabled to false in the override file, then put the parameters of your Redis instance in the external field. You may also need to configure password field to connect to your own Redis:

    redis:
      enabled: false
      external:
        host: redis.hostname.local
      secret:
        password: cvat_redis
    

    In the above example the corresponding secret will be created automatically, but if you want to use an existing secret change secret.create to false and set name of the existing secret:

    redis:
      enabled: false
      external:
        host: redis.hostname.local
      secret:
        create: false
        name: "my-redis-secret"
    

    The secret must contain the redis-password key like:

    apiVersion: v1
    kind: Secret
    metadata:
      name: "my-redis-secret"
      namespace: default
    type: generic
    stringData:
      redis-password: secretpassword
    

    I want to override some settings in values.yaml.

    Just create file values.override.yaml and place your changes here, using same structure as in values.yaml. Then reference it in helm update/install command using -f flag

    Why you used external charts to provide redis and postgres?

    Because they definitely know what they do better then we are, so we are getting more quality and less support

    How to use custom domain name with k8s deployment:

    The default value cvat.local may be overridden with --set ingress.hosts[0].host option like this:

    helm upgrade -n default cvat -i --create-namespace helm-chart -f helm-chart/values.yaml -f helm-chart/values.override.yaml --set ingress.hosts[0].host=YOUR_FQDN
    

    How to fix fail of helm upgrade due label field is immutable reason?

    If an error message like this:

    Error: UPGRADE FAILED:cannot patch "cvat-backend-server" with kind Deployment: Deployment.apps "cvat-backend-server" is invalid: spec.selector: Invalid value: v1.LabelSelector{MatchLabels:map[string]string{"app":"cvat-app", "app.kubernetes.io/instance":"cvat", "app.kubernetes.io/managed-by":"Helm", "app.kubernetes.io/name":"cvat", "app.kubernetes.io/version":"latest", "component":"server", "helm.sh/chart":"cvat", "tier":"backend"}, MatchExpressions:[]v1.LabelSelectorRequirement(nil)}: field is immutable
    

    To fix that, delete CVAT Deployments before upgrading

    kubectl delete deployments --namespace=foo -l app=cvat-app
    

    How to use existing PersistentVolume to store CVAT data instead of default storage

    It is assumed that you have created a PersistentVolumeClaim named my-claim-name and a PersistentVolume that backing the claim. Claims must exist in the same namespace as the Pod using the claim. For details see. Add these values in the values.override.yaml:

    cvat:
      backend:
        permissionFix:
          enabled: false
        defaultStorage:
          enabled: false
        server:
          additionalVolumes:
            - name: cvat-backend-data
              persistentVolumeClaim:
                claimName: my-claim-name
        worker:
          export:
            additionalVolumes:
              - name: cvat-backend-data
                persistentVolumeClaim:
                  claimName: my-claim-name
          import:
            additionalVolumes:
              - name: cvat-backend-data
                persistentVolumeClaim:
                  claimName: my-claim-name
          annotation:
            additionalVolumes:
              - name: cvat-backend-data
                persistentVolumeClaim:
                  claimName: my-claim-name
        utils:
          additionalVolumes:
            - name: cvat-backend-data
              persistentVolumeClaim:
                claimName: my-claim-name
    

    3 - Semi-automatic and Automatic Annotation

    Information about the installation of components needed for semi-automatic and automatic annotation.

    ⚠ WARNING: Do not use docker compose up If you did, make sure all containers are stopped by docker compose down.

    • To bring up cvat with auto annotation tool, from cvat root directory, you need to run:

      docker compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml up -d
      

      If you did any changes to the Docker Compose files, make sure to add --build at the end.

      To stop the containers, simply run:

      docker compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml down
      
    • You have to install nuctl command line tool to build and deploy serverless functions. Download version 1.13.0. It is important that the version you download matches the version in docker-compose.serverless.yml. For example, using wget.

      wget https://github.com/nuclio/nuclio/releases/download/<version>/nuctl-<version>-linux-amd64
      

      After downloading the nuclio, give it a proper permission and do a softlink.

      sudo chmod +x nuctl-<version>-linux-amd64
      sudo ln -sf $(pwd)/nuctl-<version>-linux-amd64 /usr/local/bin/nuctl
      
    • Deploy a couple of functions. This will automatically create a cvat Nuclio project to contain the functions. Commands below should be run only after CVAT has been installed using docker compose because it runs nuclio dashboard which manages all serverless functions.

      ./serverless/deploy_cpu.sh serverless/openvino/dextr
      ./serverless/deploy_cpu.sh serverless/openvino/omz/public/yolo-v3-tf
      

      GPU Support

      You will need to install Nvidia Container Toolkit. Also you will need to add --resource-limit nvidia.com/gpu=1 --triggers '{"myHttpTrigger": {"maxWorkers": 1}}' to the nuclio deployment command. You can increase the maxWorker if you have enough GPU memory. As an example, below will run on the GPU:

      nuctl deploy --project-name cvat \
        --path serverless/tensorflow/matterport/mask_rcnn/nuclio \
        --platform local --base-image tensorflow/tensorflow:1.15.5-gpu-py3 \
        --desc "GPU based implementation of Mask RCNN on Python 3, Keras, and TensorFlow." \
        --image cvat/tf.matterport.mask_rcnn_gpu \
        --triggers '{"myHttpTrigger": {"maxWorkers": 1}}' \
        --resource-limit nvidia.com/gpu=1
      

      Note:

      • The number of GPU deployed functions will be limited to your GPU memory.
      • See deploy_gpu.sh script for more examples.
      • For some models (namely SiamMask) you need an Nvidia driver version greater than or equal to 450.80.02.

      Note for Windows users:

      If you want to use nuclio under Windows CVAT installation you should install Nvidia drivers for WSL according to this instruction and follow the steps up to “2.3 Installing Nvidia drivers”. Important requirement: you should have the latest versions of Docker Desktop, Nvidia drivers for WSL, and the latest updates from the Windows Insider Preview Dev channel.

    Troubleshooting Nuclio Functions:

    • You can open nuclio dashboard at localhost:8070. Make sure status of your functions are up and running without any error.

    • Test your deployed DL model as a serverless function. The command below should work on Linux and Mac OS.

      image=$(curl https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png --output - | base64 | tr -d '\n')
      cat << EOF > /tmp/input.json
      {"image": "$image"}
      EOF
      cat /tmp/input.json | nuctl invoke openvino-omz-public-yolo-v3-tf -c 'application/json'
      
      20.07.17 12:07:44.519    nuctl.platform.invoker (I) Executing function {"method": "POST", "url": "http://:57308", "headers": {"Content-Type":["application/json"],"X-Nuclio-Log-Level":["info"],"X-Nuclio-Target":["openvino-omz-public-yolo-v3-tf"]}}
      20.07.17 12:07:45.275    nuctl.platform.invoker (I) Got response {"status": "200 OK"}
      20.07.17 12:07:45.275                     nuctl (I) >>> Start of function logs
      20.07.17 12:07:45.275 ino-omz-public-yolo-v3-tf (I) Run yolo-v3-tf model {"worker_id": "0", "time": 1594976864570.9353}
      20.07.17 12:07:45.275                     nuctl (I) <<< End of function logs
      
      > Response headers:
      Date = Fri, 17 Jul 2020 09:07:45 GMT
      Content-Type = application/json
      Content-Length = 100
      Server = nuclio
      
      > Response body:
      [
          {
              "confidence": "0.9992254",
              "label": "person",
              "points": [
                  39,
                  124,
                  408,
                  512
              ],
              "type": "rectangle"
          }
      ]
      
    • To check for internal server errors, run docker ps -a to see the list of containers. Find the container that you are interested, e.g., nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu. Then check its logs by docker logs <name of your container> e.g.,

      docker logs nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu
      
    • To debug a code inside a container, you can use vscode to attach to a container instructions. To apply your changes, make sure to restart the container.

      docker restart <name_of_the_container>
      

    4 - CVAT Analytics and monitoring

    Instructions for deployment and customization of analytics and monitoring.

    CVAT Analytics suite of tools is designed to track and understand users’ behavior, system performance, and for identifying potential issues in your application.

    You can also visualize user activity through Grafana, and aggregate user working time by the jobs.

    Gathered logs can be additionally filtered for efficient debugging.

    By using analytics, you’ll gain valuable insights to optimize your system and enhance user satisfaction.

    CVAT analytics are available from the top menu.

    CVAT Analytics

    Note: CVAT analytics and monitoring are available only for on-prem solution.

    See:

    High-level architecture

    The CVAT analytics is based on Vector, ClickHouse, and Grafana.

    CVAT Analytics

    CVAT Analytics

    CVAT and its analytics module can be set up locally, for self-hosted solution analytics are enabled by default.

    For detailed CVAT installation instructions, see Installation Guide or refer to the CVAT Course for installation videos.

    All analytics-related features will be launched when you start CVAT containers with the following command:

    docker compose up -d
    

    Ports settings

    If you cannot access analytics on development environnement, see Analytics Ports

    Events log structure

    Relational database schema with the following fields:

    Field Description
    scope Scope of the event (e.g., zoomin:image, add:annotations, delete:image, update:assignee).
    obj_name Object name or None (e.g., task, job, cloudstorage, model, organization).
    obj_id Object identifier as in DB or None.
    obj_val Value for the event as string or None (e.g., frame number, number of added annotations).
    source Who generates the log event (e.g., server, ui).
    timestamp Local event time (in general for UI and server, the time is different).
    count How many times in the row it occurs.
    duration How much time does it take (it can be 0 for events without duration).
    project_id Project ID or None.
    task_id Task ID or None.
    job_id Job ID or None.
    user_id User ID or None.
    user_name User name or None.
    user_email User email or None.
    org_id Organization ID or None.
    org_slug Organization slug or None.
    payload JSON payload or None. Extra fields can be added to the JSON blob.

    Types of supported events

    Supported events change the scope of information displayed in Grafana.

    Supported Events

    Server events:

    • create:project, update:project, delete:project

    • create:task, update:task, delete:task

    • create:job, update:job, delete:job

    • create:organization, update:organization, delete:organization

    • create:user, update:user, delete:user

    • create:cloudstorage, update:cloudstorage, delete:cloudstorage

    • create:issue, update:issue, delete:issue

    • create:comment, update:comment, delete:comment

    • create:annotations, update:annotations, delete:annotations

    • create:label, update:label, delete:label

    • export:dataset, import:dataset

    Client events:

    • load:cvat

    • load:job, save:job

    • send:exception

    • draw:object, paste:object, copy:object, propagate:object, drag:object, resize:object, delete:object, merge:objects, split:objects, group:objects, slice:object, join:objects

    • change:frame

    • zoom:image, fit:image, rotate:image

    • action:undo, action:redo

    • run:annotations_action

    • click:element

    • debug:info

    Working time calculation

    Here is a short overview of how CVAT deals with the user’s working time:

    • The user interface collects events when a user interacts with the interface (resizing canvas, drawing objects, clicking buttons, etc) The structure of one single event is described here.

    • The user interface sends these events in bulk to the server. Currently, it uses the following triggers to send events:

      • Periodical timer (~90 seconds)
      • A user clicks the “Save” button on the annotation view
      • A user opens the annotation view
      • A user closes the annotation view (but not the tab/browser)
      • A user clicks Logout button
    • When events reach the server, it calculates working time based on timestamps of the events.

    • The working time for an event is computed as the sum of the following:

      • The difference between the start time of the event and the end time of the previous event, if it is not more than 100 seconds.
      • The duration of the event, for events of type change:frame.
    • After calculation, the server generates send:working_time events with time value in payload. These events may or may not be bound to a certain job/task/project, depending on the client-side events that were used to generate them.

    • CVAT saves the event in the database and later these events are used to compute metrics for analytics.

    Request id for tracking

    Note, that every response to an API request made to the the server includes a header named X-Request-Id, for example: X-Request-Id: 6a2b7102-c4b9-4d57-8754-5658132ba37d.

    This identifier is also recorded in all server events that occur as a result of the respective request.

    For example, when an operation to create a task is performed, other related entities such as labels and attributes are generated on the server in addition to the Task object.

    All events associated with this operation will have the same request_id in the payload field.

    Fetching event data as CSV from the /api/events endpoint

    The /api/events endpoint allows the fetching of event data with filtering parameters such as org_id, project_id, task_id, job_id, and user_id.

    For more details, see Swagger API Documentation.

    For example, to fetch all events associated with a specific job, the following curl command can be used:

    curl --user 'user:pass' https://app.cvat.ai/api/events?job_id=123
    

    In the response, you will receive a query ID:

    { "query_id": "150cac1f-09f1-4d73-b6a5-5f47aa5d0031" }
    

    As this process may take some time to complete, the status of the request can be checked by adding the query parameter query_id to the request:

    curl -I --user 'user:pass' https://app.cvat.ai/api/events?job_id=123&query_id=150cac1f-09f1-4d73-b6a5-5f47aa5d0031
    

    Upon successful creation, the server will return a 201 Created status:

    HTTP/2 201
    allow: GET, POST, HEAD, OPTIONS
    date: Tue, 16 May 2023 13:38:42 GMT
    referrer-policy: same-origin
    server: Apache
    vary: Accept,Origin,Cookie
    x-content-type-options: nosniff
    x-frame-options: DENY
    x-request-id: 4631f5fa-a4f0-42a8-b77b-7426fc298a85
    

    The CSV file can be downloaded by adding the action=download query parameter to the request:

    curl --user 'user:pass' https://app.cvat.ai/api/events?job_id=123&query_id=150cac1f-09f1-4d73-b6a5-5f47aa5d0031&action=download > /tmp/events.csv
    

    This will download and save the file to /tmp/events.csv on your local machine.

    Dashboards

    By default, three dashboards are available in CVAT.

    To access them, click General, you will be forwarded to the page with available dashboards.

    List of dashboards

    Dashboard Description
    All Events Dashboard that shows all event logs, timestamps, and source.
    Management Dashboard with information about user activities such as working time by job and so on.
    Monitoring Dashboard showing server logs, including errors.

    Dashboard: All Events

    The dashboard shows all events, their timestamps, and their source.

    Dashboard: All Events

    Element Description
    Filters Can be used as drop-down lists or search fields. Click on the arrow to activate.
    Overall activity Graph that shows the overall activity by the selected filters.
    Scope Users’ activity, see Types of supported events.
    obj_name Object or item related to the Scope.
    obj_id Object’s id. Might be empty.
    source Source of the event, can be client or server.
    timestamp Time when the event happened.
    count Common field for all events, not null where it makes sense, for example, the
    number of saved objects in an annotation.
    duration Duration in milliseconds.
    project_id Id of the project.
    project_id Id of the project.
    task_id ID of the task.
    job_id ID of the job.

    There are two fields with statistics at the bottom of the dashboard, about browser and OS users use.

    Click on the column name to enable a filter.

    If you want to inspect the value, hover over it and click on the eye icon.

    Dashboard: Management

    The dashboard shows user activity.

    Dashboard: Management

    Element Description
    Filters Can be used as drop-down lists or search fields. Click on the arrow to activate.
    User activity Graph that shows when the user was active (data and time), click on the user id below, to see the graph for the dedicated user.
    Overall activity Graph shows common activity for all users.
    User User ID.
    Project Project ID. Might be empty.
    Task Task ID. Might be empty.
    Job Job ID. Might be empty.
    Working time(h) Time spent on task in hours.
    Activity Number of events for each user.

    Click on the column name to enable a filter.

    If you want to inspect the value, hover over it and click on the eye icon.

    Dashboard: Monitoring

    The dashboard shows server logs, helps handle errors, and shows user activity.

    Dashboard: Monitoring

    Element Description
    Filters Can be used as drop-down lists or search fields. Click on the arrow to activate.
    Active users (now) Number of active users on an instance.
    Overall activity Graph that shows the number of active users.
    Exceptions Graph that shows the number of errors that happened in the instance.
    timestamp Time when the error happened.
    user_id User ID.
    user_name User nickname.
    project_id Id of the project. Might be empty.
    task_id Task ID. Might be empty.
    job_id Job ID. Might be empty.
    error Error description
    stack Error description
    payload Error description
    stack Stack trace, which is a report of the active stack frames at a certain point in time during the execution. This information is typically used for debugging purposes to locate where an issue occurred.
    payload JSON that describes the entire object, which contains several properties. This data in the payload is related to an event that was created as a result of a failed API request. The payload contains information about this event.

    Click on the column name to enable a filter.

    If you want to inspect the value, hover over it and click on the eye icon.

    Dashboards setup

    You can adjust the dashboards. To do this, click on the graph or table name and from the drop-down menu select Edit.

    Adjust the query in the editor.

    Dashboard: look and feel

    Example of query:

    SELECT
        time,
        uniqExact(user_id) Users
    FROM
    (
        SELECT
          user_id,
          toStartOfInterval(timestamp, INTERVAL 15 minute) as time
        FROM cvat.events
        WHERE
          user_id IS NOT NULL
        GROUP BY
          user_id,
          time
        ORDER BY time ASC WITH FILL STEP toIntervalMinute(15)
    )
    GROUP BY time
    ORDER BY time
    

    Note, that by default the updated configuration will not be saved and will be reset to the default parameters after you restart the container.

    To save the updated configuration, do the following:

    1. Update Configuration: Start by making your desired changes in the query.

    2. Apply Changes: Once you’ve made your changes, click the Apply button to ensure the changes are implemented.

      Apply changes

    3. Save Configuration: To save your applied changes, on the top of the dashboard, click the Save button.

      Apply changes

    4. Replace Configuration File: After saving, replace the existing Grafana dashboard configuration file is located at components/analytics/grafana/dashboards with the new JSON configuration file.

      Apply changes

    5. Restart Grafana Service: To ensure, that all changes take effect, restart the Grafana service. If you’re using Docker Compose, execute the following command: docker compose restart cvat_grafana.

    For more information, see Grafana Dashboards.

    Example of use

    This video demonstrates available by default CVAT analytics features.

    5 - Mounting cloud storage

    Instructions on how to mount AWS S3 bucket, Microsoft Azure container or Google Drive as a filesystem.

    AWS S3 bucket as filesystem

    Ubuntu 20.04

    Mount

    1. Install s3fs:

      sudo apt install s3fs
      
    2. Enter your credentials in a file ${HOME}/.passwd-s3fs and set owner-only permissions:

      echo ACCESS_KEY_ID:SECRET_ACCESS_KEY > ${HOME}/.passwd-s3fs
      chmod 600 ${HOME}/.passwd-s3fs
      
    3. Uncomment user_allow_other in the /etc/fuse.conf file: sudo nano /etc/fuse.conf

    4. Run s3fs, replace bucket_name, mount_point:

      s3fs <bucket_name> <mount_point> -o allow_other -o passwd_file=${HOME}/.passwd-s3fs
      

    For more details see here.

    Automatically mount

    Follow the first 3 mounting steps above.

    Using fstab
    1. Create a bash script named aws_s3_fuse(e.g in /usr/bin, as root) with this content (replace user_name on whose behalf the disk will be mounted, backet_name, mount_point, /path/to/.passwd-s3fs):

      #!/bin/bash
      sudo -u <user_name> s3fs <backet_name> <mount_point> -o passwd_file=/path/to/.passwd-s3fs -o allow_other
      exit 0
      
    2. Give it the execution permission:

      sudo chmod +x /usr/bin/aws_s3_fuse
      
    3. Edit /etc/fstab adding a line like this, replace mount_point):

      /absolute/path/to/aws_s3_fuse  <mount_point>     fuse    allow_other,user,_netdev     0       0
      
    Using systemd
    1. Create unit file sudo nano /etc/systemd/system/s3fs.service (replace user_name, bucket_name, mount_point, /path/to/.passwd-s3fs):

      [Unit]
      Description=FUSE filesystem over AWS S3 bucket
      After=network.target
      
      [Service]
      Environment="MOUNT_POINT=<mount_point>"
      User=<user_name>
      Group=<user_name>
      ExecStart=s3fs <bucket_name> ${MOUNT_POINT} -o passwd_file=/path/to/.passwd-s3fs -o allow_other
      ExecStop=fusermount -u ${MOUNT_POINT}
      Restart=always
      Type=forking
      
      [Install]
      WantedBy=multi-user.target
      
    2. Update the system configurations, enable unit autorun when the system boots, mount the bucket:

      sudo systemctl daemon-reload
      sudo systemctl enable s3fs.service
      sudo systemctl start s3fs.service
      

    Check

    A file /etc/mtab contains records of currently mounted filesystems.

    cat /etc/mtab | grep 's3fs'
    

    Unmount filesystem

    fusermount -u <mount_point>
    

    If you used systemd to mount a bucket:

    sudo systemctl stop s3fs.service
    sudo systemctl disable s3fs.service
    

    Microsoft Azure container as filesystem

    Ubuntu 20.04

    Mount

    1. Set up the Microsoft package repository.(More here)

      wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb
      sudo dpkg -i packages-microsoft-prod.deb
      sudo apt-get update
      
    2. Install blobfuse and fuse:

      sudo apt-get install blobfuse fuse
      

      For more details see here

    3. Create environments (replace account_name, account_key, mount_point):

      export AZURE_STORAGE_ACCOUNT=<account_name>
      export AZURE_STORAGE_ACCESS_KEY=<account_key>
      MOUNT_POINT=<mount_point>
      
    4. Create a folder for cache:

      sudo mkdir -p /mnt/blobfusetmp
      
    5. Make sure the file must be owned by the user who mounts the container:

      sudo chown <user> /mnt/blobfusetmp
      
    6. Create the mount point, if it doesn’t exists:

      mkdir -p ${MOUNT_POINT}
      
    7. Uncomment user_allow_other in the /etc/fuse.conf file: sudo nano /etc/fuse.conf

    8. Mount container(replace your_container):

      blobfuse ${MOUNT_POINT} --container-name=<your_container> --tmp-path=/mnt/blobfusetmp -o allow_other
      

    Automatically mount

    Follow the first 7 mounting steps above.

    Using fstab
    1. Create configuration file connection.cfg with same content, change accountName, select one from accountKey or sasToken and replace with your value:

      accountName <account-name-here>
      # Please provide either an account key or a SAS token, and delete the other line.
      accountKey <account-key-here-delete-next-line>
      #change authType to specify only 1
      sasToken <shared-access-token-here-delete-previous-line>
      authType <MSI/SAS/SPN/Key/empty>
      containerName <insert-container-name-here>
      
    2. Create a bash script named azure_fuse(e.g in /usr/bin, as root) with content below (replace user_name on whose behalf the disk will be mounted, mount_point, /path/to/blobfusetmp,/path/to/connection.cfg):

      #!/bin/bash
      sudo -u <user_name> blobfuse <mount_point> --tmp-path=/path/to/blobfusetmp  --config-file=/path/to/connection.cfg -o allow_other
      exit 0
      
    3. Give it the execution permission:

      sudo chmod +x /usr/bin/azure_fuse
      
    4. Edit /etc/fstab with the blobfuse script. Add the following line(replace paths):

      /absolute/path/to/azure_fuse </path/to/desired/mountpoint> fuse allow_other,user,_netdev
      
    Using systemd
    1. Create unit file sudo nano /etc/systemd/system/blobfuse.service. (replace user_name, mount_point, container_name,/path/to/connection.cfg):

      [Unit]
      Description=FUSE filesystem over Azure container
      After=network.target
      
      [Service]
      Environment="MOUNT_POINT=<mount_point>"
      User=<user_name>
      Group=<user_name>
      ExecStart=blobfuse ${MOUNT_POINT} --container-name=<container_name> --tmp-path=/mnt/blobfusetmp --config-file=/path/to/connection.cfg -o allow_other
      ExecStop=fusermount -u ${MOUNT_POINT}
      Restart=always
      Type=forking
      
      [Install]
      WantedBy=multi-user.target
      
    2. Update the system configurations, enable unit autorun when the system boots, mount the container:

      sudo systemctl daemon-reload
      sudo systemctl enable blobfuse.service
      sudo systemctl start blobfuse.service
      

      Or for more detail see here

    Check

    A file /etc/mtab contains records of currently mounted filesystems.

    cat /etc/mtab | grep 'blobfuse'
    

    Unmount filesystem

    fusermount -u <mount_point>
    

    If you used systemd to mount a container:

    sudo systemctl stop blobfuse.service
    sudo systemctl disable blobfuse.service
    

    If you have any mounting problems, check out the answers to common problems

    Google Drive as filesystem

    Ubuntu 20.04

    Mount

    To mount a google drive as a filesystem in user space(FUSE) you can use google-drive-ocamlfuse To do this follow the instructions below:

    1. Install google-drive-ocamlfuse:

      sudo add-apt-repository ppa:alessandro-strada/ppa
      sudo apt-get update
      sudo apt-get install google-drive-ocamlfuse
      
    2. Run google-drive-ocamlfuse without parameters:

      google-drive-ocamlfuse
      

      This command will create the default application directory (~/.gdfuse/default), containing the configuration file config (see the wiki page for more details about configuration). And it will start a web browser to obtain authorization to access your Google Drive. This will let you modify default configuration before mounting the filesystem.

      Then you can choose a local directory to mount your Google Drive (e.g.: ~/GoogleDrive).

    3. Create the mount point, if it doesn’t exist(replace mount_point):

      mountpoint="<mount_point>"
      mkdir -p $mountpoint
      
    4. Uncomment user_allow_other in the /etc/fuse.conf file: sudo nano /etc/fuse.conf

    5. Mount the filesystem:

      google-drive-ocamlfuse -o allow_other $mountpoint
      

    Automatically mount

    Follow the first 4 mounting steps above.

    Using fstab
    1. Create a bash script named gdfuse(e.g in /usr/bin, as root) with this content (replace user_name on whose behalf the disk will be mounted, label, mount_point):

      #!/bin/bash
      sudo -u <user_name> google-drive-ocamlfuse -o allow_other -label <label> <mount_point>
      exit 0
      
    2. Give it the execution permission:

      sudo chmod +x /usr/bin/gdfuse
      
    3. Edit /etc/fstab adding a line like this, replace mount_point):

      /absolute/path/to/gdfuse  <mount_point>     fuse    allow_other,user,_netdev     0       0
      

      For more details see here

    Using systemd
    1. Create unit file sudo nano /etc/systemd/system/google-drive-ocamlfuse.service. (replace user_name, label(default label=default), mount_point):

      [Unit]
      Description=FUSE filesystem over Google Drive
      After=network.target
      
      [Service]
      Environment="MOUNT_POINT=<mount_point>"
      User=<user_name>
      Group=<user_name>
      ExecStart=google-drive-ocamlfuse -label <label> ${MOUNT_POINT}
      ExecStop=fusermount -u ${MOUNT_POINT}
      Restart=always
      Type=forking
      
      [Install]
      WantedBy=multi-user.target
      
    2. Update the system configurations, enable unit autorun when the system boots, mount the drive:

      sudo systemctl daemon-reload
      sudo systemctl enable google-drive-ocamlfuse.service
      sudo systemctl start google-drive-ocamlfuse.service
      

      For more details see here

    Check

    A file /etc/mtab contains records of currently mounted filesystems.

    cat /etc/mtab | grep 'google-drive-ocamlfuse'
    

    Unmount filesystem

    fusermount -u <mount_point>
    

    If you used systemd to mount a drive:

    sudo systemctl stop google-drive-ocamlfuse.service
    sudo systemctl disable google-drive-ocamlfuse.service
    

    6 - LDAP Backed Authentication

    Allow users to login with credentials from a central source

    The creation of settings.py

    When integrating LDAP login, we need to create an overlay to the default CVAT settings located in cvat/settings/production.py. This overlay is where we will configure Django to connect to the LDAP server.

    The main issue with using LDAP is that different LDAP implementations have different parameters. So the options used for Active Directory backed authentication will differ if you were to be using FreeIPA.

    Update docker-compose.override.yml

    In your override config you need to passthrough your settings and tell CVAT to use them by setting the DJANGO_SETTINGS_MODULE variable.

    services:
      cvat_server:
        environment:
          DJANGO_SETTINGS_MODULE: settings
        volumes:
          - ./settings.py:/home/django/settings.py:ro
    

    Active Directory Example

    The following example should allow for users to authenticate themselves against Active Directory. This example requires a dummy user named cvat_bind. The configuration for the bind account does not need any special permissions.

    When updating AUTH_LDAP_BIND_DN, you can write out the account info in two ways. Both are documented in the config below.

    This config is known to work with Windows Server 2022, but should work for older versions and Samba’s implementation of Active Directory.

    # We are overlaying production
    from cvat.settings.production import *
    
    # Custom code below
    import ldap
    from django_auth_ldap.config import LDAPSearch
    from django_auth_ldap.config import NestedActiveDirectoryGroupType
    
    # Notify CVAT that we are using LDAP authentication
    IAM_TYPE = 'LDAP'
    
    # Talking to the LDAP server
    AUTH_LDAP_SERVER_URI = "ldap://ad.example.com" # IP Addresses also work
    ldap.set_option(ldap.OPT_REFERRALS, 0)
    
    _BASE_DN = "CN=Users,DC=ad,DC=example,DC=com"
    
    # Authenticating with the LDAP server
    AUTH_LDAP_BIND_DN = "CN=cvat_bind,%s" % _BASE_DN
    # AUTH_LDAP_BIND_DN = "cvat_bind@ad.example.com"
    AUTH_LDAP_BIND_PASSWORD = "SuperSecurePassword^21"
    
    AUTH_LDAP_USER_SEARCH = LDAPSearch(
        _BASE_DN,
        ldap.SCOPE_SUBTREE,
        "(sAMAccountName=%(user)s)"
    )
    
    AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
        _BASE_DN,
        ldap.SCOPE_SUBTREE,
        "(objectClass=group)"
    )
    
    # Mapping Django field names to Active Directory attributes
    AUTH_LDAP_USER_ATTR_MAP = {
        "user_name": "sAMAccountName",
        "first_name": "givenName",
        "last_name": "sn",
        "email": "mail",
    }
    
    # Group Management
    AUTH_LDAP_GROUP_TYPE = NestedActiveDirectoryGroupType()
    
    # Register Django LDAP backend
    AUTHENTICATION_BACKENDS += ['django_auth_ldap.backend.LDAPBackend']
    
    # Map Active Directory groups to Django/CVAT groups.
    AUTH_LDAP_ADMIN_GROUPS = [
        'CN=CVAT Admins,%s' % _BASE_DN,
    ]
    AUTH_LDAP_BUSINESS_GROUPS = [
        'CN=CVAT Managers,%s' % _BASE_DN,
    ]
    AUTH_LDAP_WORKER_GROUPS = [
        'CN=CVAT Workers,%s' % _BASE_DN,
    ]
    AUTH_LDAP_USER_GROUPS = [
        'CN=CVAT Users,%s' % _BASE_DN,
    ]
    
    DJANGO_AUTH_LDAP_GROUPS = {
        "admin": AUTH_LDAP_ADMIN_GROUPS,
        "business": AUTH_LDAP_BUSINESS_GROUPS,
        "user": AUTH_LDAP_USER_GROUPS,
        "worker": AUTH_LDAP_WORKER_GROUPS,
    }
    

    FreeIPA Example

    The following example should allow for users to authenticate themselves against FreeIPA. This example requires a dummy user named cvat_bind. The configuration for the bind account does not need any special permissions.

    When updating AUTH_LDAP_BIND_DN, you can only write the user info in one way, unlike with Active Directory

    This config is known to work with AlmaLinux 8, but may work for other versions and flavors of Enterprise Linux.

    # We are overlaying production
    from cvat.settings.production import *
    
    # Custom code below
    import ldap
    from django_auth_ldap.config import LDAPSearch
    from django_auth_ldap.config import GroupOfNamesType
    
    # Notify CVAT that we are using LDAP authentication
    IAM_TYPE = 'LDAP'
    
    _BASE_DN = "CN=Accounts,DC=ipa,DC=example,DC=com"
    
    # Talking to the LDAP server
    AUTH_LDAP_SERVER_URI = "ldap://ipa.example.com" # IP Addresses also work
    ldap.set_option(ldap.OPT_REFERRALS, 0)
    
    # Authenticating with the LDAP server
    AUTH_LDAP_BIND_DN = "UID=cvat_bind,CN=Users,%s" % _BASE_DN
    AUTH_LDAP_BIND_PASSWORD = "SuperSecurePassword^21"
    
    AUTH_LDAP_USER_SEARCH = LDAPSearch(
        "CN=Users,%s" % _BASE_DN,
        ldap.SCOPE_SUBTREE,
        "(uid=%(user)s)"
    )
    
    AUTH_LDAP_GROUP_SEARCH = LDAPSearch(
        "CN=Groups,%s" % _BASE_DN,
        ldap.SCOPE_SUBTREE,
        "(objectClass=groupOfNames)"
    )
    
    # Mapping Django field names to FreeIPA attributes
    AUTH_LDAP_USER_ATTR_MAP = {
        "user_name": "uid",
        "first_name": "givenName",
        "last_name": "sn",
        "email": "mail",
    }
    
    # Group Management
    AUTH_LDAP_GROUP_TYPE = GroupOfNamesType()
    
    # Register Django LDAP backend
    AUTHENTICATION_BACKENDS += ['django_auth_ldap.backend.LDAPBackend']
    
    # Map FreeIPA groups to Django/CVAT groups.
    AUTH_LDAP_ADMIN_GROUPS = [
        'CN=cvat_admins,CN=Groups,%s' % _BASE_DN,
    ]
    AUTH_LDAP_BUSINESS_GROUPS = [
        'CN=cvat_managers,CN=Groups,%s' % _BASE_DN,
    ]
    AUTH_LDAP_WORKER_GROUPS = [
        'CN=cvat_workers,CN=Groups,%s' % _BASE_DN,
    ]
    AUTH_LDAP_USER_GROUPS = [
        'CN=cvat_users,CN=Groups,%s' % _BASE_DN,
    ]
    
    DJANGO_AUTH_LDAP_GROUPS = {
        "admin": AUTH_LDAP_ADMIN_GROUPS,
        "business": AUTH_LDAP_BUSINESS_GROUPS,
        "user": AUTH_LDAP_USER_GROUPS,
        "worker": AUTH_LDAP_WORKER_GROUPS,
    }
    

    Resources

    7 - Backup guide

    Instructions on how to backup CVAT data with Docker.

    About CVAT data volumes

    Docker volumes are used to store all CVAT data:

    • cvat_db: PostgreSQL database files, used to store information about users, tasks, projects, annotations, etc. Mounted into cvat_db container by /var/lib/postgresql/data path.

    • cvat_data: used to store uploaded and prepared media data. Mounted into cvat container by /home/django/data path.

    • cvat_keys: used to store the Django secret key. Mounted into cvat container by /home/django/keys path.

    • cvat_logs: used to store logs of CVAT backend processes managed by supevisord. Mounted into cvat container by /home/django/logs path.

    • cvat_events: this is an optional volume that is used only when Analytics component is enabled and is used to store Elasticsearch database files. Mounted into cvat_elasticsearch container by /usr/share/elasticsearch/data path.

    How to backup all CVAT data

    All CVAT containers should be stopped before backup:

    docker compose stop
    

    Please don’t forget to include all the compose config files that were used in the docker compose command using the -f parameter.

    Backup data:

    mkdir backup
    docker run --rm --name temp_backup --volumes-from cvat_db -v $(pwd)/backup:/backup ubuntu tar -czvf /backup/cvat_db.tar.gz /var/lib/postgresql/data
    docker run --rm --name temp_backup --volumes-from cvat_server -v $(pwd)/backup:/backup ubuntu tar -czvf /backup/cvat_data.tar.gz /home/django/data
    # [optional]
    docker run --rm --name temp_backup --volumes-from cvat_elasticsearch -v $(pwd)/backup:/backup ubuntu tar -czvf /backup/cvat_events.tar.gz /usr/share/elasticsearch/data
    

    Make sure the backup archives have been created, the output of ls backup command should look like this:

    ls backup
    cvat_data.tar.gz  cvat_db.tar.gz  cvat_events.tar.gz
    

    How to restore CVAT from backup

    Warning: use exactly the same CVAT version to restore DB. Otherwise it will not work because between CVAT releases the layout of DB can be changed. You always can upgrade CVAT later. It will take care to migrate your data properly internally.

    Note: CVAT containers must exist (if no, please follow the installation guide). Stop all CVAT containers:

    docker compose stop
    

    Restore data:

    cd <path_to_backup_folder>
    docker run --rm --name temp_backup --volumes-from cvat_db -v $(pwd):/backup ubuntu bash -c "cd /var/lib/postgresql/data && tar -xvf /backup/cvat_db.tar.gz --strip 4"
    docker run --rm --name temp_backup --volumes-from cvat_server -v $(pwd):/backup ubuntu bash -c "cd /home/django/data && tar -xvf /backup/cvat_data.tar.gz --strip 3"
    # [optional]
    docker run --rm --name temp_backup --volumes-from cvat_elasticsearch -v $(pwd):/backup ubuntu bash -c "cd /usr/share/elasticsearch/data && tar -xvf /backup/cvat_events.tar.gz --strip 4"
    

    After that run CVAT as usual:

    docker compose up -d
    

    Additional resources

    Docker guide about volume backups

    8 - Upgrade guide

    Instructions for upgrading CVAT deployed with docker compose

    Upgrade guide

    Note: updating CVAT from version 2.2.0 to version 2.3.0 requires additional manual actions with database data due to upgrading PostgreSQL base image major version. See details here

    To upgrade CVAT, follow these steps:

    • It is highly recommended backup all CVAT data before updating, follow the backup guide and backup all CVAT volumes.

    • Go to the previously cloned CVAT directory and stop all CVAT containers with:

      docker compose down
      

      If you have included additional components, include all compose configuration files that are used, e.g.:

      docker compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml down
      
    • Update CVAT source code by any preferable way: clone with git or download zip file from GitHub. Note that you need to download the entire source code, not just the Docker Compose configuration file. Check the installation guide for details.

    • Verify settings: The installation process is changed/modified from version to version and you may need to export some environment variables, for example CVAT_HOST.

    • Update local CVAT images. Pull or build new CVAT images, see How to pull/build/update CVAT images section for details.

    • Start CVAT with:

      docker compose up -d
      

      When CVAT starts, it will upgrade its DB in accordance with the latest schema. It can take time especially if you have a lot of data. Please do not terminate the migration and wait till the process is complete. You can monitor the startup process with the following command:

      docker logs cvat_server -f
      

    How to upgrade CVAT from v2.2.0 to v2.3.0.

    Step by step commands how to upgrade CVAT from v2.2.0 to v2.3.0. Let’s assume that you have CVAT v2.2.0 working.

    docker exec -it cvat_db pg_dumpall > cvat.db.dump
    cd cvat
    docker compose down
    docker volume rm cvat_cvat_db
    export CVAT_VERSION="v2.3.0"
    cd ..
    mv cvat cvat_220
    wget https://github.com/cvat-ai/cvat/archive/refs/tags/${CVAT_VERSION}.zip
    unzip ${CVAT_VERSION}.zip && mv cvat-${CVAT_VERSION:1} cvat
    unset CVAT_VERSION
    cd cvat
    export CVAT_HOST=cvat.example.com
    export ACME_EMAIL=example@example.com
    docker compose pull
    docker compose up -d cvat_db
    docker exec -i cvat_db psql -q -d postgres < ../cvat.db.dump
    docker compose -f docker-compose.yml -f docker-compose.dev.yml -f docker-compose.https.yml up -d
    

    How to upgrade CVAT from v1.7.0 to v2.2.0.

    Step by step commands how to upgrade CVAT from v1.7.0 to v2.2.0. Let’s assume that you have CVAT v1.7.0 working.

    export CVAT_VERSION="v2.2.0"
    cd cvat
    docker compose down
    cd ..
    mv cvat cvat_170
    wget https://github.com/cvat-ai/cvat/archive/refs/tags/${CVAT_VERSION}.zip
    unzip ${CVAT_VERSION}.zip && mv cvat-${CVAT_VERSION:1} cvat
    cd cvat
    docker pull cvat/server:${CVAT_VERSION}
    docker tag cvat/server:${CVAT_VERSION} openvino/cvat_server:latest
    docker pull cvat/ui:${CVAT_VERSION}
    docker tag cvat/ui:${CVAT_VERSION} openvino/cvat_ui:latest
    docker compose up -d
    

    How to upgrade PostgreSQL database base image

    1. It is highly recommended backup all CVAT data before updating, follow the backup guide and backup CVAT database volume.

    2. Run previously used CVAT version as usual

    3. Backup current database with pg_dumpall tool:

      docker exec -it cvat_db pg_dumpall > cvat.db.dump
      
    4. Stop CVAT:

      docker compose down
      
    5. Delete current PostgreSQL’s volume, that’s why it’s important to have a backup:

      docker volume rm cvat_cvat_db
      
    6. Update CVAT source code by any preferable way: clone with git or download zip file from GitHub. Check the installation guide for details.

    7. Start database container only:

      docker compose up -d cvat_db
      
    8. Import PostgreSQL dump into new DB container:

      docker exec -i cvat_db psql -q -d postgres < cvat.db.dump
      
    9. Start CVAT:

      docker compose up -d
      

    9 - Webhooks

    CVAT Webhooks: set up and use

    Webhooks are user-defined HTTP callbacks that are triggered by specific events. When an event that triggers a webhook occurs, CVAT makes an HTTP request to the URL configured for the webhook. The request will include a payload with information about the event.

    CVAT, webhooks can be triggered by a variety of events, such as the creation, deletion, or modification of tasks, jobs, and so on. This makes it easy to set up automated processes that respond to changes made in CVAT.

    For example, you can set up webhooks to alert you when a job’s assignee is changed or when a job/task’s status is updated, for instance, when a job is completed and ready for review or has been reviewed. New task creation can also trigger notifications.

    These capabilities allow you to keep track of progress and changes in your CVAT workflow instantly.

    In CVAT you can create a webhook for a project or organization. You can use CVAT GUI or direct API calls.

    See:

    Create Webhook

    For project

    To create a webhook for Project, do the following:

    1. Create a Project.

    2. Go to the Projects and click on the project’s widget.

    3. In the top right corner, click Actions > Setup Webhooks.

    4. In the top right corner click +

      Create Project Webhook

    5. Fill in the Setup webhook form and click Submit.

    For organization

    To create a webhook for Organization, do the following:

    1. Create Organization
    2. Go to the Organization > Settings > Actions > Setup Webhooks.
    3. In the top right corner click +

    1. Fill in the Setup webhook form and click Submit.

    Webhooks forms

    The Setup a webhook forms look like the following.

    Create Project And Org Webhook Forms

    Forms have the following fields:

    Field Description
    Target URL The URL where the event data will be sent.
    Description Provides a brief summary of the webhook’s purpose.
    Project A drop-down list that lets you select from available projects.
    Content type Defines the data type for the payload in the webhook request via the HTTP Content-Type field.
    Secret A unique key for verifying the webhook’s origin, ensuring it’s genuinely from CVAT.
    For more information, see Webhook secret
    Enable SSL A checkbox for enabling or disabling SSL verification.
    Active Uncheck this box if you want to stop the delivery of specific webhook payloads.
    Send everything Check this box to send all event types through the webhook.
    Specify individual events Choose this option to send only certain event types.
    Refer to the List of available events for more information on event types.

    List of events

    The following events are available for webhook alerts.

    Resource Create Update Delete Description
    Organization Alerts for changes made to an Organization.
    Membership Alerts when a member is added to or removed from an organization.
    Invitation Alerts when an invitation to an Organization is issued or revoked.
    Project Alerts for any actions taken within a project.
    Task Alerts for actions related to a task, such as status changes, assignments, etc.
    Job Alerts for any updates made to a job.
    Issue Alerts for any activities involving issues.
    Comment Alerts for actions involving comments, such as creation, deletion, or modification.

    Payloads

    Create event

    Webhook payload object for create:<resource> events:

    Key Type Description
    event string Identifies the event that triggered the webhook, following the create:<resource> pattern.
    <resource> object Complete information about the created resource. Refer to the Swagger docs for individual resource details.
    webhook_id integer The identifier for the webhook that sends the payload.
    sender object Details about the user that triggered the webhook.

    An example of payload for the create:task event:

    
    {
     "event": "create:task",
        "task": {
            "url": "<http://localhost:8080/api/tasks/15>",
            "id": 15,
            "name": "task",
            "project_id": 7,
            "mode": "",
            "owner": {
                "url": "<http://localhost:8080/api/users/1>",
                "id": 1,
                "username": "admin1",
                "first_name": "Admin",
                "last_name": "First"
            },
            "assignee": null,
            "bug_tracker": "",
            "created_date": "2022-10-04T08:05:50.419259Z",
            "updated_date": "2022-10-04T08:05:50.422917Z",
            "overlap": null,
            "segment_size": 0,
            "status": "annotation",
            "labels": \[
                {
                    "id": 28,
                    "name": "label_0",
                    "color": "#bde94a",
                    "attributes": [],
                    "type": "any",
                    "sublabels": [],
                    "has_parent": false
                }
            \],
            "segments": [],
            "dimension": "2d",
            "subset": "",
            "organization": null,
            "target_storage": {
                "id": 14,
                "location": "local",
                "cloud_storage_id": null
            },
            "source_storage": {
                "id": 13,
                "location": "local",
                "cloud_storage_id": null
            }
        },
        "webhook_id": 7,
        "sender": {
            "url": "<http://localhost:8080/api/users/1>",
            "id": 1,
            "username": "admin1",
            "first_name": "Admin",
            "last_name": "First"
        }
    }
    

    Update event

    Webhook payload object for update:<resource> events:

    Key Type Description
    event string Identifies the event that triggered the webhook, following the update:<resource> pattern.
    <resource> object Provides complete information about the updated resource. See the Swagger docs for resource details.
    before_update object Contains keys of <resource> that were updated, along with their old values.
    webhook_id integer The identifier for the webhook that dispatched the payload.
    sender object Details about the user that triggered the webhook.

    An example of update:<resource> event:

    
    {
        "event": "update:task",
        "task": {
            "url": "<http://localhost:8080/api/tasks/15>",
            "id": 15,
            "name": "new task name",
            "project_id": 7,
            "mode": "annotation",
            "owner": {
                "url": "<http://localhost:8080/api/users/1>",
                "id": 1,
                "username": "admin1",
                "first_name": "Admin",
                "last_name": "First"
            },
            "assignee": null,
            "bug_tracker": "",
            "created_date": "2022-10-04T08:05:50.419259Z",
            "updated_date": "2022-10-04T11:04:51.451681Z",
            "overlap": 0,
            "segment_size": 1,
            "status": "annotation",
            "labels": \[
                {
                    "id": 28,
                    "name": "label_0",
                    "color": "#bde94a",
                    "attributes": [],
                    "type": "any",
                    "sublabels": [],
                    "has_parent": false
                }
            \],
            "segments": \[
                {
                    "start_frame": 0,
                    "stop_frame": 0,
                    "jobs": \[
                        {
                            "url": "<http://localhost:8080/api/jobs/19>",
                            "id": 19,
                            "assignee": null,
                            "status": "annotation",
                            "stage": "annotation",
                            "state": "new"
                        }
                    \]
                }
            \],
            "data_chunk_size": 14,
            "data_compressed_chunk_type": "imageset",
            "data_original_chunk_type": "imageset",
            "size": 1,
            "image_quality": 70,
            "data": 14,
            "dimension": "2d",
            "subset": "",
            "organization": null,
            "target_storage": {
                "id": 14,
                "location": "local",
                "cloud_storage_id": null
            },
            "source_storage": {
                "id": 13,
                "location": "local",
                "cloud_storage_id": null
            }
        },
        "before_update": {
            "name": "task"
        },
        "webhook_id": 7,
        "sender": {
            "url": "<http://localhost:8080/api/users/1>",
            "id": 1,
            "username": "admin1",
            "first_name": "Admin",
            "last_name": "First"
        }
    }
    

    Delete event

    Webhook payload object for delete:<resource> events:

    Key Type Description
    event string Identifies the event that triggered the webhook, following the delete:<resource> pattern.
    <resource> object Provides complete information about the deleted resource. See the Swagger docs for resource details.
    webhook_id integer The identifier for the webhook that dispatched the payload.
    sender object Details about the user that triggered the webhook.

    Here is an example of the payload for the delete:task event:

    
    {
        "event": "delete:task",
        "task": {
            "url": "<http://localhost:8080/api/tasks/15>",
            "id": 15,
            "name": "task",
            "project_id": 7,
            "mode": "",
            "owner": {
                "url": "<http://localhost:8080/api/users/1>",
                "id": 1,
                "username": "admin1",
                "first_name": "Admin",
                "last_name": "First"
            },
            "assignee": null,
            "bug_tracker": "",
            "created_date": "2022-10-04T08:05:50.419259Z",
            "updated_date": "2022-10-04T08:05:50.422917Z",
            "overlap": null,
            "segment_size": 0,
            "status": "annotation",
            "labels": \[
                {
                    "id": 28,
                    "name": "label_0",
                    "color": "#bde94a",
                    "attributes": [],
                    "type": "any",
                    "sublabels": [],
                    "has_parent": false
                }
            \],
            "segments": [],
            "dimension": "2d",
            "subset": "",
            "organization": null,
            "target_storage": {
                "id": 14,
                "location": "local",
                "cloud_storage_id": null
            },
            "source_storage": {
                "id": 13,
                "location": "local",
                "cloud_storage_id": null
            }
        },
        "webhook_id": 7,
        "sender": {
            "url": "<http://localhost:8080/api/users/1>",
            "id": 1,
            "username": "admin1",
            "first_name": "Admin",
            "last_name": "First"
        }
    }
    

    Webhook secret

    To validate that the webhook requests originate from CVAT, include a secret during the webhook creation process.

    When a secret is provided for the webhook, CVAT includes an X-Signature-256 in the request header of the webhook.

    CVAT uses the SHA256 hash function to encode the request body for the webhook and places the resulting hash into the header.

    The webhook recipient can verify the source of the request by comparing the received X-Signature-256 value with the expected value.

    Here’s an example of a header value for a request with an empty body and secret = mykey:

    X-Signature-256: e1b24265bf2e0b20c81837993b4f1415f7b68c503114d100a40601eca6a2745f
    

    Here is an example of how you can verify a webhook signature in your webhook receiver service:

    # webhook_receiver.py
    
    import hmac
    from hashlib import sha256
    from flask import Flask, request
    
    app = Flask(__name__)
    
    @app.route("/webhook", methods=["POST"])
    def webhook():
        signature = (
            "sha256="
            + hmac.new("mykey".encode("utf-8"), request.data, digestmod=sha256).hexdigest()
        )
    
        if hmac.compare_digest(request.headers["X-Signature-256"], signature):
            return app.response_class(status=200)
    
        raise app.response_class(status=500, response="Signatures didn't match!")
    

    Ping Webhook

    To confirm the proper configuration of your webhook and ensure that CVAT can establish a connection with the target URL, use the Ping webhook feature.

    Ping Webhook

    1. Click the Ping button in the user interface (or send a POST /webhooks/{id}/ping request through API).
    2. CVAT will send a webhook alert to the specified target URL with basic information about the webhook.

    Ping webhook payload:

    Key Type Description
    event string The value is always ping.
    webhook object Complete information about the webhook. See the Swagger docs for a detailed description of fields.
    sender object Information about the user who initiated the ping on the webhook.

    Here is an example of a payload for the ping event:

    
    {
       "event": "ping",
        "webhook": {
            "id": 7,
            "url": "<http://localhost:8080/api/webhooks/7>",
            "target_url": "<https://example.com>",
            "description": "",
            "type": "project",
            "content_type": "application/json",
            "is_active": true,
            "enable_ssl": true,
            "created_date": "2022-10-04T08:05:23.007381Z",
            "updated_date": "2022-10-04T08:05:23.007395Z",
            "owner": {
                "url": "<http://localhost:8080/api/users/1>",
                "id": 1,
                "username": "admin1",
                "first_name": "Admin",
                "last_name": "First"
            },
            "project": 7,
            "organization": null,
            "events": \[
                "create:comment",
                "create:issue",
                "create:task",
                "delete:comment",
                "delete:issue",
                "delete:task",
                "update:comment",
                "update:issue",
                "update:job",
                "update:project",
                "update:task"
            \],
            "last_status": 200,
            "last_delivery_date": "2022-10-04T11:04:52.538638Z"
        },
        "sender": {
            "url": "<http://localhost:8080/api/users/1>",
            "id": 1,
            "username": "admin1",
            "first_name": "Admin",
            "last_name": "First"
        }
    }
    

    Webhooks with API calls

    To create webhook via an API call, see Swagger documentation.

    For examples, see REST API tests.

    Example of setup and use

    This video demonstrates setting up email alerts for a project using Zapier and Gmail.