Command line interface (CLI)
Overview
A simple command line interface for working with CVAT tasks. At the moment it implements a basic feature set but may serve as the starting point for a more comprehensive CVAT administration tool in the future.
Overview of functionality:
- Create a new task (supports name, bug tracker, project, labels JSON, local/share/remote files)
- Delete tasks (supports deleting a list of task IDs)
- List all tasks (supports basic CSV or JSON output)
- Download JPEG frames (supports a list of frame IDs)
- Dump annotations (supports all formats via format string)
- Upload annotations for a task in the specified format (e.g. ‘YOLO ZIP 1.0’)
- Export and download a whole task
- Import a task
Installation
To install an official release of CVAT CLI, use this command:
pip install cvat-cli
We support Python versions 3.8 and higher.
Usage
You can get help with cvat-cli --help
.
usage: cvat-cli [-h] [--version] [--insecure] [--auth USER:[PASS]] [--server-host SERVER_HOST]
[--server-port SERVER_PORT] [--organization SLUG] [--debug]
{create,delete,ls,frames,dump,upload,export,import,auto-annotate} ...
Perform common operations related to CVAT tasks.
positional arguments:
{create,delete,ls,frames,dump,upload,export,import,auto-annotate}
options:
-h, --help show this help message and exit
--version show program's version number and exit
--insecure Allows to disable SSL certificate check
--auth USER:[PASS] defaults to the current user and supports the PASS environment variable or password
prompt (default user: ...).
--server-host SERVER_HOST
host (default: localhost)
--server-port SERVER_PORT
port (default: 80 for http and 443 for https connections)
--organization SLUG, --org SLUG
short name (slug) of the organization to use when listing or creating resources; set
to blank string to use the personal workspace (default: list all accessible objects,
create in personal workspace)
--debug show debug output
You can get help for each positional argument, e.g. ls
:
cvat-cli ls -h
usage: cvat-cli ls [-h] [--json]
List all CVAT tasks in simple or JSON format.
optional arguments:
-h, --help show this help message and exit
--json output JSON data
Examples
Create
Description of the options you can find in Creating an annotation task section.
For create a task you need file contain labels in the json
format, you can create a JSON label specification
by using the label constructor.
Example JSON labels file
[
{
"name": "cat",
"attributes": []
},
{
"name": "dog",
"attributes": []
}
]
- Create a task named “new task” on the default server “localhost:8080”, labels from the file “labels.json”
and local images “file1.jpg” and “file2.jpg”, the task will be created as current user:
cvat-cli create "new task" --labels labels.json local file1.jpg file2.jpg
- Create a task named “task 1” on the server “example.com” labels from the file “labels.json”
and local image “image1.jpg”, the task will be created as user “user-1”:
cvat-cli --server-host example.com --auth user-1 create "task 1" \ --labels labels.json local image1.jpg
- Create a task named “task 1” on the default server, with labels from “labels.json”
and local image “file1.jpg”, as the current user, in organization “myorg”:
cvat-cli --org myorg create "task 1" --labels labels.json local file1.jpg
- Create a task named “task 1”, labels from the project with id 1 and with a remote video file,
the task will be created as user “user-1”:
cvat-cli --auth user-1:password create "task 1" --project_id 1 \ remote https://github.com/opencv/opencv/blob/master/samples/data/vtest.avi?raw=true
- Create a task named “task 1 sort random”, with labels “cat” and “dog”, with chunk size 8,
with sorting-method random, frame step 10, copy the data on the CVAT server,
with use zip chunks and the video file will be taken from the shared resource:
cvat-cli create "task 1 sort random" --labels '[{"name": "cat"},{"name": "dog"}]' --chunk_size 8 \ --sorting-method random --frame_step 10 --copy_data --use_zip_chunks share //share/dataset_1/video.avi
- Create a task named “task from dataset_1”, labels from the file “labels.json”, with link to bug tracker,
image quality will be reduced to 75, annotation in the format “CVAT 1.1” will be taken
from the file “annotation.xml”, the data will be loaded from “dataset_1/images/”,
the task will be created as user “user-2”, and the password will need to be entered additionally:
cvat-cli --auth user-2 create "task from dataset_1" --labels labels.json \ --bug_tracker https://bug-tracker.com/0001 --image_quality 75 --annotation_path annotation.xml \ --annotation_format "CVAT 1.1" local dataset_1/images/
- Create a task named “segmented task 1”, labels from the file “labels.json”, with overlay size 5,
segment size 100, with frames 5 through 705, using cache and with a remote video file:
cvat-cli create "segmented task 1" --labels labels.json --overlap 5 --segment_size 100 \ --start_frame 5 --stop_frame 705 --use_cache \ remote https://github.com/opencv/opencv/blob/master/samples/data/vtest.avi?raw=true
- Create a task named “task 1 with sync annotation”, with label “person”,
with annotation storage in
git
repository, enablelfs
and the image files from the shared resource:cvat-cli create "task 1 with sync annotation" --labels '[{"name": "person"}]' \ --dataset_repository_url https://github.com/user/dataset/blob/main/annotation/anno_file_name.zip \ --lfs share //share/large_dataset/images/
- Create a task named “task with filtered cloud storage data”, with filename_pattern
test_images/*.jpeg
and using the data from the cloud storage resource described in the manifest.jsonl:cvat-cli create "task with filtered cloud storage data" --labels '[{"name": "car"}]'\ --use_cache --cloud_storage_id 1 --filename_pattern "test_images/*.jpeg" share manifest.jsonl
- Create a task named “task with filtered cloud storage data” using all data from the cloud storage resource
described in the manifest.jsonl by specifying filename_pattern
*
:cvat-cli create "task with filtered cloud storage data" --labels '[{"name": "car"}]'\ --use_cache --cloud_storage_id 1 --filename_pattern "*" share manifest.jsonl
Delete
- Delete tasks with id “100”, “101”, “102” , the command will be executed from “user-1” having delete permissions:
cvat-cli --auth user-1:password delete 100 101 102
List
- List all tasks:
cvat-cli ls
- List all tasks in organization “myorg”:
cvat-cli --org myorg ls
- Save list of all tasks into file “list_of_tasks.json”:
cvat-cli ls --json > list_of_tasks.json
Frames
- Save frame 12, 15, 22 from task with id 119, into “images” folder with compressed quality:
cvat-cli frames --outdir images --quality compressed 119 12 15 22
Dump annotation
- Dump annotation task with id 103, in the format
CVAT for images 1.1
and save to the file “output.zip”:cvat-cli dump --format "CVAT for images 1.1" 103 output.zip
- Dump annotation task with id 104, in the format
COCO 1.0
and save to the file “output.zip”:cvat-cli dump --format "COCO 1.0" 104 output.zip
Upload annotation
- Upload annotation into task with id 105, in the format
CVAT 1.1
from the file “annotation.xml”:cvat-cli upload --format "CVAT 1.1" 105 annotation.xml
Export task
- Export task with id 136 to file “task_136.zip”:
cvat-cli export 136 task_136.zip
Import
- Import task from file “task_backup.zip”:
cvat-cli import task_backup.zip
Auto-annotate
This command provides a command-line interface to the auto-annotation API.
It can auto-annotate using AA functions implemented in one of the following ways:
-
As a Python module directly implementing the AA function protocol. Such a module must define the required attributes at the module level.
For example:
import cvat_sdk.auto_annotation as cvataa spec = cvataa.DetectionFunctionSpec(...) def detect(context, image): ...
-
As a Python module implementing a factory function named
create
. This function must return an object implementing the AA function protocol. Any parameters specified on the command line using the-p
option will be passed tocreate
.For example:
import cvat_sdk.auto_annotation as cvataa class _MyFunction: def __init__(...): ... spec = cvataa.DetectionFunctionSpec(...) def detect(context, image): ... def create(...) -> cvataa.DetectionFunction: return _MyFunction(...)
-
Annotate the task with id 137 with the predefined torchvision detection function, which is parameterized:
cvat-cli auto-annotate 137 --function-module cvat_sdk.auto_annotation.functions.torchvision_detection \ -p model_name=str:fasterrcnn_resnet50_fpn_v2 -p box_score_thresh=float:0.5
-
Annotate the task with id 138 with an AA function defined in
my_func.py
:cvat-cli auto-annotate 138 --function-file path/to/my_func.py
Note that this command does not modify the Python module search path. If your function module needs to import other local modules, you must add your module directory to the search path if it isn’t there already.
- Annotate the task with id 139 with a function defined in the
my_func
module located in themy-project
directory, letting it import other modules from that directory.PYTHONPATH=path/to/my-project cvat-cli auto-annotate 139 --function-module my_func