Semi-automatic and Automatic Annotation
⚠ WARNING: Do not use
docker-compose up
If you did, make sure all containers are stopped bydocker-compose down
.
-
To bring up cvat with auto annotation tool, from cvat root directory, you need to run:
If you did any changes to the docker-compose files, make sure to add
--build
at the end.To stop the containers, simply run:
-
You have to install
nuctl
command line tool to build and deploy serverless functions. Download version 1.5.16. It is important that the version you download matches the version in docker-compose.serverless.yml After downloading the nuclio, give it a proper permission and do a softlinksudo chmod +x nuctl-<version>-linux-amd64 sudo ln -sf $(pwd)/nuctl-<version>-linux-amd64 /usr/local/bin/nuctl
-
Create
cvat
project inside nuclio dashboard where you will deploy new serverless functions and deploy a couple of DL models. Commands below should be run only after CVAT has been installed usingdocker-compose
because it runs nuclio dashboard which manages all serverless functions.Note:
- See deploy_cpu.sh for more examples.
GPU Support
You will need to install Nvidia Container Toolkit. Also you will need to add
--resource-limit nvidia.com/gpu=1 --triggers '{"myHttpTrigger": {"maxWorkers": 1}}'
to the nuclio deployment command. You can increase the maxWorker if you have enough GPU memory. As an example, below will run on the GPU:Note:
- The number of GPU deployed functions will be limited to your GPU memory.
- See deploy_gpu.sh script for more examples.
Troubleshooting Nuclio Functions:
-
You can open nuclio dashboard at localhost:8070. Make sure status of your functions are up and running without any error.
-
Test your deployed DL model as a serverless function. The command below should work on Linux and Mac OS.
-
To check for internal server errors, run
docker ps -a
to see the list of containers. Find the container that you are interested, e.g.,nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu
. Then check its logs bydocker logs <name of your container>
e.g., -
To debug a code inside a container, you can use vscode to attach to a container instructions. To apply your changes, make sure to restart the container.