MS COCO Object Detection
COCO export
Downloaded file: a zip archive with the structure described here
- supported annotations: Polygons, Rectangles
- supported attributes:
is_crowd
(checkbox or integer with values 0 and 1) - specifies that the instance (an object group) should have an RLE-encoded mask in thesegmentation
field. All the grouped shapes are merged into a single mask, the largest one defines all the object propertiesscore
(number) - the annotationscore
field- arbitrary attributes - will be stored in the
attributes
annotation section
Support for COCO tasks via Datumaro is described here For example, support for COCO keypoints over Datumaro:
- Install Datumaro
pip install datumaro
- Export the task in the
Datumaro
format, unzip - Export the Datumaro project in
coco
/coco_person_keypoints
formatsdatum export -f coco -p path/to/project [-- --save-images]
This way, one can export CVAT points as single keypoints or
keypoint lists (without the visibility
COCO flag).
COCO import
Uploaded file: a single unpacked *.json
or a zip archive with the structure described
here
(without images).
- supported annotations: Polygons, Rectangles (if the
segmentation
field is empty)
MS COCO Keypoint Detection
COCO export
Downloaded file: a zip archive with the structure described here
- supported annotations: Skeletons
- supported attributes:
is_crowd
(checkbox or integer with values 0 and 1) - specifies that the instance (an object group) should have an RLE-encoded mask in thesegmentation
field. All the grouped shapes are merged into a single mask, the largest one defines all the object propertiesscore
(number) - the annotationscore
field- arbitrary attributes - will be stored in the
attributes
annotation section
COCO import
Uploaded file: a single unpacked *.json
or a zip archive with the structure described
here
(without images).
- supported annotations: Skeletons
How to create a task from MS COCO dataset
-
Download the MS COCO dataset.
For example
val images
andinstances
annotations -
Create a CVAT task with the following labels:
person bicycle car motorcycle airplane bus train truck boat "traffic light" "fire hydrant" "stop sign" "parking meter" bench bird cat dog horse sheep cow elephant bear zebra giraffe backpack umbrella handbag tie suitcase frisbee skis snowboard "sports ball" kite "baseball bat" "baseball glove" skateboard surfboard "tennis racket" bottle "wine glass" cup fork knife spoon bowl banana apple sandwich orange broccoli carrot "hot dog" pizza donut cake chair couch "potted plant" bed "dining table" toilet tv laptop mouse remote keyboard "cell phone" microwave oven toaster sink refrigerator book clock vase scissors "teddy bear" "hair drier" toothbrush
-
Select
val2017.zip
as data (See Creating an annotation task guide for details) -
Unpack
annotations_trainval2017.zip
-
click
Upload annotation
button, chooseCOCO 1.1
and selectinstances_val2017.json
annotation file. It can take some time.